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The nonlinear dynamics of three-dimensional instabilities of uniform gravity-wave
trains evolving to crescent wave patterns is investigated numerically. A new mechanism
of generation of oscillating horseshoe patterns is proposed and a detailed discussion
on their occurrence in a water wave tank is given. It is suggested that these patterns are
more likely to be observed naturally in water of finite depth. A critical wave steepness
for the onset of three-dimensional wave breaking due to the nonlinear evolution
of quintet resonant interactions corresponding to the phase-locked crescent-shaped
structures (class II instability) is provided when the quartet resonant interaction (class I
instability) is absent. The nonlinear coupling between quartet resonant interactions
(class I instability) and quintet resonant interactions (class II instability) leading to
three-dimensional breaking waves, as shown experimentally by Su & Green (1984,
1985), is numerically investigated.

1. Introduction
The present study is devoted to three-dimensional crescent-shaped patterns

occurring at the sea surface and more specifically to those emerging naturally from the
instability of Stokes waves. These structures play an important role in wave breaking
which for natural conditions are predominantly three-dimensional and cause transfer
of momentum and energy between the ocean and the atmosphere. They may result
from spontaneous instabilities of a two-dimensional water wave field. The stability of
two-dimensional uniform Stokes wave trains has been studied for many decades. The
pioneering authors were Lighthill (1965), Benjamin & Feir (1967) and Zakharov
(1968). Later McLean et al. (1981) and McLean (1982a) discovered a new kind
of three-dimensional instability which, prior to this, had been suggested in a two-
dimensional study by Longuet-Higgins (1978). While pioneering works focused on in-
stabilities resulting from a resonant interaction between four components of the wave
field, McLean and co-authors investigated resonant five-wave interactions and sugges-
ted separating instabilities into two classes: class I(m) and class II(m) corresponding
to (2m + 2)-wave interactions and (2m + 3)-wave interactions, respectively. In infinite
depth McLean also considered the case m =2 that corresponds to resonant six- and
seven-wave interactions. Our study is confined to interactions corresponding to m =1.

In water of infinite depth, it is well known that the two-dimensional modulational
instability is dominant for small to moderate initial steepness ak (a is the amplitude
and k the wavenumber) and evolves into a recurrence phenomenon (the Fermi–Pasta–
Ulam recurrence) for small initial wave steepness. This phenomenon is characterized
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by a series of modulation–demodulation cycles in which initially uniform wave trains
become modulated and then demodulated until they are again uniform. Modulation
is caused by growth of the two dominant sidebands of the Benjamin–Feir instability
at the expense of the carrier wavenumber. Banner & Tian (1996, 1998) predicted
an energy exchange leading to breaking for initial steepness larger than a threshold
value. Another kind of disturbance dominated by three-dimensional instabilities (see
McLean 1982) exists and becomes dominant for larger values of ak. This instability
may lead to the formation of horseshoe patterns evolving into three-dimensional
spilling breakers. These three-dimensional patterns take the form of crescent-shaped
perturbations riding on the basic waves.

Su et al. (1982) and Su (1982) performed a series of experiments on instabilities of
Stokes waves of large steepness in deep water in a long tow tank and a wide basin.
They observed three-dimensional structures corresponding to the nonlinear evolution
of the dominant instability discovered by McLean et al. (1981). The initial two-
dimensional wave train of large steepness evolves into a series of three-dimensional
spilling breakers, followed by a transition to a more or less two-dimensional wave
train. Further experimental investigations were described by Melville (1982). The
horseshoe patterns may also be produced in wave tank experiments in the presence
of wind (Kusuba & Mitsuyasu 1986). Generally, the two kinds of instability, namely
the modulational instability and the crescent patterns which belong to class I and
class II respectively, co-exist in the wave field. Depending on parameters such as
the wave steepness of the initial Stokes wave and water depth, one can expect a
competition to occur between the two classes of instability. Note that for shallow
water cases and relatively moderate steepness, instability of a plane Stokes wave is
dominated by class II (Francius & Kharif 2005).

Su & Green (1984, 1985) reported results of experimental investigations on a
coupled interaction between the two classes of instability. They came to the conclusion
that class I and II instabilities interact strongly during the evolution of wave
trains with moderate initial steepness. They suggested that modulations produced
by essentially two-dimensional instabilities (class I) were sufficient to trigger the
predominantly three-dimensional instabilities (class II) that consequently limit the
growth of the class I. Furthermore, they showed that this coupling may lead to
the three-dimensional crescent-shaped breaking waves. Using the modified Zakahrov
equation, Stiassnie & Shemer (1987) examined the coupled evolution of class I and
class II instabilities and found, in contrast to single class (I or II) evolution, that
coupled behaviour was non-periodic. Except for very steep waves, they observed a
dominance of class I interactions over those of class II and did not find the trigger
mechanism.

Besides the three-dimensional patterns that are phase-locked with the plane Stokes
waves, Collard & Caulliez (1999) found oscillating three-dimensional crescent-shaped
patterns in a wind wave facility. To isolate the three-dimensional pattern formation
they used a thin plastic film to cover the water surface and a light wind to balance
the damping effect due to the plastic film. The role of the film was twofold: to
prevent the breaking of the waves and to eliminate the modulational instability.
While the crescent patterns phase-locked to the basic wave are in staggered rows, the
oscillating crescent patterns are aligned. These aligned patterns were observed for the
first time by Skandrani (1996) who used a numerical code similar to that developed
by Dommermuth & Yue (1987). Later Kharif & Pontier (2000) and Kharif, Pontier &
Skandrani (2000, personal communication) reported further numerical results on
three-dimensional structures. Using direct numerical simulations Xue et al. (2001)
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investigated the nonlinear evolution of unstable three-dimensional disturbances of
class II leading to L2 and L3 patterns as observed by Su. In addition to the L2 and
L3 patterns, we consider L1 patterns corresponding to the oscillating crescents. Very
recently, Fuhrman, Madsen & Bingham (2004) presented a numerical study of these
patterns using the fully nonlinear and dispersive Boussinesq formulation. To explain
wind wave horseshoe patterns seen on the sea surface Shrira, Badulin & Kharif
(1996) developed a simple model derived from the Zakharov equation, modified to
include non-conservative effects. The model of the latter authors was revisited by
Craig (2001). This aspect is also discussed in the review paper of Dias & Kharif
(1999).

The motivation of the paper is twofold: (i) to complete and extend previous studies
on the dynamics of three-dimensional doubly periodic water wave patterns in infinite
and finite depths, focusing particularly on the oscillating structures recently observed
in a wave tank, (ii) to investigate numerically the nonlinear instability coupling
leading to three-dimensional water wave breaking. The latter point was considered
experimentally by Su & Green (1984, 1985). In § 2 the numerical model we use to
solve the full set of water wave equations governing the nonlinear evolution of class I
and class II instabilities is presented. Section 3 is devoted to the dynamics of crescent
wave patterns due to class II instabilities in infinite depth and comparison with
experimental results of Su (1982) and Collard & Caulliez (1999). In § 4 we focus
our attention on the competition between crescent wave patterns and modulational
instability, that is competition between different instabilities of class II and also
between class I and class II instabilities. In § 5 we discuss the effect of depth on the
class competition. The case kh = 1, where h is the depth, is considered. In § 6 is given
an explanation for the selection mechanism that may be responsible for triggering
the instability responsible of the occurrence of the oscillating patterns. Note that the
corresponding resonant quintet is never the most linearly unstable perturbation of
the class II. Numerical experiments are provided.

2. Model for fully nonlinear simulations
Breaking is strongly associated with splashing, turbulence, mixing and dissipation.

This means that breaking of water waves is a turbulent two-phase flow. Theoretical
modelling is very complex and the potential model we use is unable to capture these
features. Herein, we consider numerical simulations up to the point where breaking
occurs. This limitation is due to the Eulerian description used in the present model. A
Lagrangian approach may allow calculations to continue up to the point at which the
surface impacts on itself. Chen et al. (1999) provided numerical simulations describing
plunging breakers including the splash-up phenomenon. They used a two-dimensional
Navier–Stokes solver with a VOF technique. The method in use here is described in
§ 2.1 and has been developed by Clamond & Grue (2001) and Grue (2002). It was
implemented and tested in Fructus et al. (2005).

2.1. Notation and equations

Let x = (x, y), z and t be, respectively, the horizontal Cartesian coordinates, the
upward vertical coordinate and the time; z = 0, z = −h and z = η(x, t) are, respectively,
the equations of the still water level, of the impermeable horizontal bottom and
of the impermeable free surface. Let also v = (u, w) be the velocity field, where
u=(u, v) and w are the horizontal and vertical velocities, so that v = grad φ, u = ∇φ

and w = φz; φ is the velocity potential and ∇ the horizontal gradient. We denote
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with tildes the quantities at the surface, e.g. φ̃(x, t) =φ(x, z = η(x, t), t). Note that

ũ = ∇̃φ �= ∇φ̃ = ũ + w̃ ∇η, and

ũ =
∇φ̃ − V ∇η + (∇η × ∇φ̃) × ∇η

1 + |∇η|2 , w̃ =
V + ∇η · ∇φ̃

1 + |∇η|2 , (2.1a, b)

where V = φn

√
1 + |∇η|2, φn being the outward normal derivative of φ at the surface.

At the impermeable free surface where the pressure is zero, the kinematic and
dynamic conditions can be conveniently written as

ηt − V = 0, φ̃t + gη + 1
2

ũ · ∇φ̃ − 1
2
w̃ V = 0, (2.2a, b)

due to g being the acceleration of gravity.
The Laplace equation (resulting from incompressibility and irrotationality), together

with the bottom impermeability, is solved exactly by means of a Green function and
the method of images (Clamond & Grue 2001; Grue 2002), i.e.∫

S

(
1

r̃
+

1

r̃
B

)
∂φ′

∂n′ dS ′ = 2πφ̃ +

∫
S

φ̃′ ∂

∂n′

(
1

r̃
+

1

r̃
B

)
dS ′, (2.3)

where φ̃ = φ̃(x, t), φ̃′ = φ̃(x ′, t), r2 = R2 + (z′ − z)2 and r2
B

= R2 + (z′ + z + 2h)2, with
R = |R| where R = x ′ −x (the horizontal distance between the source point and the

field point). For non-overturning surfaces dS ′ =
√

1+|∇′η′|2 dx ′ dy ′, one thus obtains∫
V ′

(1 + D 2)1/2

dx ′

R
+

∫
V ′(

1 + 4hD
B
R−1

B
+ D2

B

)1/2

dx ′

R
B

= 2πφ̃ +

∫
φ̃′ (R · ∇′η′ − η′ + η)

(1 + D2)3/2

dx ′

R 3
+

∫
φ̃′ (R · ∇′η′ − η′ − η − 2h)(

1 + 4hD
B
R−1

B
+ D2

B

)3/2

dx ′

R3
B

, (2.4)

where D = (η′−η)/R, D
B
= (η′+η)/R

B
, R

B
=

√
R 2 + 4h2 and with the convenient brief

notation ∫
• dx ′ ≡

∫ ∞

−∞

∫ ∞

−∞
• dx ′ dy ′. (2.5)

The Fourier transform is written

φ̂(k, t) ≡ F{φ̃(x, t)} =

∫
φ̃(x, t) e−ik·x dx. (2.6)

In the deep water case, the terms involving R
B

in equation (2.4) vanish. This
equation is then inverted by means of Fourier transform and V̂ is decomposed into
V̂ = V̂1 + V̂2 + V̂3 + V̂4. After some transformations, the contributions are given by

V̂1 = k φ̂,

V̂2 = −k F {ηV1} − ik · F{ η ∇φ̃ },

2πV̂3 = k F
{ ∫

φ̃′ [ 1 − (1 + D 2)−3/2
]

∇′ · [ (η′ − η) ∇′R−1] dx ′
}

,

2πV̂4 = −πk F{η2F−1{k F{V }} − 2η F−1{k F{ηV }} + F−1{k F{η2V }}}

+ k F
{ ∫

V ′ R−1
[
1 − 1

2
D 2 − (1 + D 2)−1/2

]
dx ′

}
.
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For the finite water depth case, all terms in the integral equation (2.4) have to be

considered. This leads to a similar formulation where V̂1 and V̂2 are corrected by a
factor tanh(kh) and where two additional integrals and some more convolution terms
appear, see Grue (2002, § 6) and Fructus et al. (2005).

The kernels of the inner integrals of V̂3 and V̂4 decay like R−4 and R−5, respectively.
These integrals are evaluated over a very limited region of the x-plane. V4 is determined
implicitly and hence computed iteratively. For practical computations one iteration
is shown to be sufficient. Moreover, the computations of the integrals are easily
parallelizable. The implementation is done in Fortran 90 and allows computation
on multiprocessor systems. For integrating the temporal system of equation (2.2), an
analytical integration of the linear part of the system is first performed. The remaining
nonlinear system is then solved via a six-stage fifth-order Runge–Kutta scheme with
an embedded fourth-order scheme for the time-stepping control. To avoid aliasing
errors, we use an anti-aliasing technique which is based on zeros padding. It is
important to stress that this is the only method which is used to avoid numerical
instabilities, i.e. we do not use a smoothing technique for instance. This yields a
method which is very stable and accurate.

In order to emphasize the efficiency and the potential of the method, we have
run test cases where the propagation of an initial Stokes wave in infinite depth was
considered (since this is the initial background wave field we will mainly consider
in this paper). The present study use as examples initial Stokes waves of steepness
ak mainly in a range between 0.1 to 0.3. For this range, the method developed by
Fenton (1988) is used to compute the steady waves. In consequence we first test
the validity of the model for an initial steepness of 0.3 in a run where the wave is
propagated forward in time during 1000 periods of the Stokes wave. To check the
reversibility of the scheme we then perform a backward propagation (in time) from

the last computed result. The total energy (defined by 2E =
∫

(ηt φ̃+gη2) dx) as well as
the evolution of the phase shift are monitored during the simulation. The wave field
(considering two wavelengths in the propagation direction) is discretized over 64 × 64
collocation points per period (meaning that the first seven harmonics of the Stokes
wave are resolved). The resulting simulation (not shown here) shows that the phase
shift increases linearly with time, reaching 18◦ after 1000 periods of propagation. The
phase shift then decreases to zero during the backward integration. Simultaneously
the relative energy error (E(t) − E(0))/E(0) is of order 10−5 (and is almost constant
over the time span of the simulation). An important point is that no trend is observed
in the evolution of the energy (even after 2000 periods of propagation). The absence
of a trend is crucial for the reversibility of the scheme and emphasizes the fact that
no smoothing techniques have been used (those usually have a dramatic effect on the
energy conservation!). The initial condition is perfectly recovered, meaning that the
errors due to the time integrator, the computation of the integrals and the round-off
errors are insignificant over the time scale considered.

We have extended the numerical tests of the method a bit further: waves with
steepness up to ak = 0.4 (numerical simulations with ak = 0.38 and ak = 0.4 have
been performed). Since Fenton’s method becomes less efficient when the steepness
becomes too high, we used the iterative method developed by Longuet-Higgins (1985)
to compute these very steep waves. Since the new test is aimed at showing that
the model can deal with large values of the steepness and still be highly stable, we
decreased the values of numerical parameters to do faster simulations. The numerical
experiments were then performed over 100 periods in a back and forth time simulation
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when the parameter determining the number of iterations in the evaluation of V4

was decreased from 3 to 1 (which in the previous case led to a phase shift of about
10◦ after 100 periods). The relative error in the energy was observed to be always
lower than 10−3 (no trend was observed) while the phase shift had a maximum value
of about 20◦ after 100 periods. As previously the initial condition was accurately
recovered and the solution was very stable during the simulations without requiring
any smoothing.

Another important issue is the computational time. We checked the time simulation
on a single processor machine equipped with a 1.3 GHz Pentium P4-M processor. For
the computations corresponding to figures 3 and 5 (see § 3.2.1 below) three iterations
were used for the computation of V4 (as in all the other numerical simulations done in
the paper). The total computational time for the two simulations was around 5500 s.

This demonstrates that the method is fast and accurate. The total energy is very
well conserved: this is due to the fact that no smoothing is used. The procedure is
highly stable, however.

2.2. Onset of breaking identification

Wave breaking is characterized by the overturning of the free surface. During this
process the slope of the surface becomes infinite, leading numerically to a spread of
energy into high wavenumbers. This local steepening is characterized by a numerical
blow-up (for methods dealing with an Eulerian description of the flow). Numerical
blow-up is not necessarily a breaking criterion, however. Several kinematic and
dynamic criteria for wave breaking have been suggested such as maximum horizontal
velocity at the crest compared to the speed of the crest or maximum vertical
acceleration or potential energy/total energy exceeding a given threshold. The works
of Dold & Peregrine (1986) and Banner & Tian (1998) suggested that breaking may
occur when the relative growth rates of the mean momentum and energy density, at
their envelope maxima, are sustained at a given threshold of 0.2. Clearly, no simple
breaking criteria exist. This is true even for a two-dimensional wave field.

Our purpose is not to provide a parameter criterion for the onset of wave breaking.
We merely want to check that the numerical blow-up we observe, in the cases
where it occurs, corresponds to an effective breaking of the wave. In order to check
that, all the simulations leading to breaking are performed for several refinements
of the grid. In addition, we perform a test based on the Banner & Tian (1998)
(and Dold & Peregrine 1986) work. We consider an initial modulated wave group
with five waves in the modulation. Following Banner & Tian (1996, 1998), two
small linearly unstable spectral sidebands are superimposed on the initial free-surface
profile. According to their investigation a periodic transfer of energy between the
main frequency and the sidebands (Fermi–Pasta–Ulam recurrence phenomenon) is
observed for an initial wave steepness (ak)0 = 0.11. For higher values of the steepness
wave breaking is observed. We have repeated the numerical experiments of Banner &
Tian with (ak)0 = 0.11 and (ak)0 = 0.1125. Figure 1 shows the free-surface profiles of
these two simulations at the same dimensionless time t/T0 just before breaking of
the simulation corresponding to an initial steepness (ak)0 = 0.1125. The simulation
corresponding to an initial steepness (ak)0 = 0.11 does not lead to breaking but to
a series of modulation/demodulation cycles as illustrated in figure 2 which shows
the energy transfer between the fundamental mode and the sidebands for both cases.
The energy E is the square of the amplitude of satellite modes while E0 is the
square of the amplitude of the fundamental mode of the unperturbed Stokes wave.
Our method cannot describe the jet formation, nevertheless it can predict whether
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Figure 1. Free-surface profiles of an evolved wave group with five waves in the modulation.
To the initial Stokes wave has been added two small sidebands at t/T0 = 0. (a) An evolved wave
group with initial steepness (ak)0 = 0.11 at t/T0 = 123, in this case the evolution is periodic.
(b) An initial steepness (ak)0 = 0.1125 at t/T0 = 123, this case leads to breaking.
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Figure 2. Normalized energy evolution of the fundamental mode and satellites: (k, 0) (solid
line), (0.8k, 0) (dashed line) and (1.2k, 0) (dotted line). (a) An initial steepness (ak)0 = 0.11
showing the periodic modulations. (b) An initial steepness (ak)0 = 0.1125 showing the numerical
blow-up of the simulation corresponding to breaking.

an initial uniform Stokes wave train will evolve or not into a breaking wave. The
numerical blow-up we have observed, when it is independent of the grid refinement,
corresponds physically to the onset of breaking.

3. Dynamics of crescent wave patterns on deep water
3.1. Initialization

The classical water wave problem consists of solving, for the velocity potential, φ,
and the elevation of the free surface, η, the Laplace equation in the flow domain with
nonlinear boundary conditions at the free surface and a bottom condition. It is well
known that this problem admits two-dimensional periodic solutions in the form of
travelling gravity waves (Stokes waves). Let us denote η̄ and φ̄ the elevation and the
potential of the Stokes wave of fundamental wavenumber k and phase speed c (which
in what follows below are evaluated using the method developed by Fenton 1988).

Stokes waves are unstable to perturbations. Let η(x, y, t) = η̄(x, t) + η′(x, y, t) and
φ(x, y, z, t) = φ̄(x, z, t) + φ′(x, y, z, t) with η′(x, y, t) � 1 and φ′(x, y, z, t) � 1.

To calculate the infinitesimal disturbances η′ and φ′, the water wave equations are
linearized about η̄ and φ̄. Non-trivial solutions of the linearized problem are sought
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in the form

η′(x, y, t) = est+ipk(x−ct)+iqky

n=+∞∑
n=−∞

ane
ink(x−ct) + c.c., (3.1a)

φ′(x, y, z, t) = est+ipk(x−ct)+iqky

n=+∞∑
n=−∞

bne
ink(x−ct)+γnz + c.c., (3.1b)

with γn = k
√

(p + n)2 + q2, where p and q are arbitrary real numbers and c.c.
denotes the complex conjugate. The truncated series are substituted into the linearized
equations to give an eigenvalue problem. The eigenvalues are the values of s such
that there is a non-trivial solution with time-dependence est . Instability corresponds
to Re(s) > 0. Once the steepness ak and the real numbers p and q are fixed, the
spectrum and the corresponding eigenfunctions are computed until convergence
is obtained by increasing the order of truncation (for more details see Kharif &
Ramamonjiarisoa 1988, 1990). In order to produce the occurrence of the crescent
wave patterns observed in experiments, the initial condition is a Stokes wave of
steepness ak disturbed by an unstable three-dimensional perturbation (instability of
class II). The normalized amplitude, ε, of the perturbation relative to the Stokes
wave amplitude is initially taken of order 10−2. For simplicity and without loss of
generality we set the fundamental wave-vector of the Stokes wave k0 = (k, 0) = (1, 0).
The wave-vectors of the dominant modes of the unstable perturbation of class II are
k1 = (kx, ky) = (1 + p, q) and k2 = (kx, ky) = (2 − p, −q) while for instability of class I
they are k1 = (kx, ky) = (1 + p, q) and k2 = (kx, ky) = (1 − p, −q).

For numerical simulations we consider a wave tank of length L = 2πN and width
W = 2πM/q , where N and M are integers. For a given number of wavelengths (N ) of
the Stokes wave in the numerical tank, Benjamin–Feir instabilities may or not be cap-
tured in the computational domain. This means that Benjamin–Feir instabilities may
be avoided so as to reproduce experimental conditions when a plastic film is used.

We performed convergence tests resolving up to 32 harmonics of the Stokes waves
in the x-direction and 32 harmonics of the perturbation in the transverse direction.
We found that, most of the time (for small to moderate initial steepness as considered
here), eight harmonics were sufficient in both directions. Higher wave modes were
negligible throughout the time simulation.

The number of grid points in the two horizontal dimensions are chosen such that for
all simulations at least eight harmonics of the Stokes waves in the main propagation
direction and at least eight harmonics of the perturbation in the transverse direction,
are discretized. The numerical scheme needs no smoothing but uses the zeros-padding
technique to perform de-aliased computations of the convolution sums. We choose to
take the padding factor equal to two in order to be able to resolve cubic nonlinearity
without aliasing. This means that the numerical grid in use has, at least, 32N points
in the x-direction and 32M points in the y-direction.

3.2. Evolution of isolated class II instabilities

In this section we consider the nonlinear evolution of an initial Stokes wave train
of fundamental wave-vector, k0, and frequency, ω0, perturbed by a single instability
corresponding to given values of p and q . The perturbation is chosen to belong to
class II instability. It is known, however, that for an initial steepness (ak)0 < 0.314 of
the unperturbed Stokes waves the most unstable perturbation is of class I. Herein we
impose that the class I instability must not develop. This may be justified by the fact
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that in experimental setups, the use of a plastic film on the free surface can play a
similar role, cancelling or attenuating the modulational instability. Note that in finite
depth the strength of the dominant instabilities of class I and class II may be of the
same order when the wave is moderately steep. Competition between instabilities of
class II and class I is considered in § 4.2.

The numerical discretization is chosen in order to avoid the presence of unstable
spectral components which belong to class I. This means that for practical
computations involving Stokes wave trains of small to moderate initial steepness
we set N = 2.

The evolution of class II instabilities have been the topic of many studies.
Experimental investigations (Su 1982; Melville 1982) as well as theoretical (Shrira
et al. 1996) and numerical studies (Xue et al. 2001; Fuhrman et al. 2004) provide
a good understanding of the underlying phenomenon responsible for the formation
of crescent wave patterns. Two satellites of wave-vectors k1 and k∗

2 and frequency
ω1 and ω∗

2, may resonate with the fundamental of the Stokes wave, k0, in a quintet
interaction if the following resonance condition is fulfilled:

k1 + k∗
2 = 3k0,

ω1 + ω∗
2 = 3ω0.

}
(3.2)

This quintet interaction leads to the formation of crescent wave patterns.
Let us consider an initial perturbation with dominant wave-vectors k1 = (1+1/n, q)

and k∗
2 = (2 − 1/n, −q). This means that p = 1/n where the integer n � 2. If the

frequency condition is satisfied the quintet interaction is resonant. The amplitude of
the components of the perturbation corresponding to these wave-vectors increases
exponentially as time increases and then saturates owing to nonlinearity to reach a
maximum when the amplitude of the fundamental is minimum. Following Su (1982),
the nonlinear development of this instability leads to the formation of Ln patterns.

The most unstable perturbation of class II corresponds to p = 1
2
. The corresponding

L2 pattern is phase-locked to the unperturbed Stokes waves. This means that the
corresponding horseshoe pattern travels with the same speed as the undisturbed
wave. Many observations of such patterns have been reported.

Another interesting three-dimensional pattern was generated experimentally by
Collard & Caulliez (1999). They observed the development of the unstable mode
corresponding to p = 0. As pointed out by McLean (1982a) there is an artificial
degeneracy in the choice of p which can be removed by restricting p to the range
0 � p < 1. So the structures corresponding to p =0 correspond also to n=1. For
that case two pairs of dominant components fulfil (3.2). The definition by Su can be
used for n= 1. Collard & Caulliez named these L1 structures ‘oscillating horseshoe’
patterns.

In order to check the quintet interaction conditions (3.2), we compute, for each
simulation, the evolution of the magnitude of the Fourier transform of the perturbed
wave field |F(η)(kx, ky, t)|. We investigate simultaneously the frequency spectrum,
ω(kx, ky, t). This is obtained from the Fourier transform of the perturbed wave field
from F(η) = |F(η)| exp(iχ) and ω(kx, ky, t) = ∂χ/∂t . This means that we can check
the frequency evolution for each individual mode (kx, ky).

3.2.1. Evolution leading to breaking and comparison with available experiments

First, we investigate the case n= 2 (or p = 1
2
) which corresponds to the phase-

locked L2 patterns that were observed experimentally by Su (1982), Melville (1982),
Kusuba & Mitsuyasu (1986) and Collard & Caulliez (1999). In the Su and Melville
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),

(ak)0 = 0.2985 and ε = 0.05.

experiments the initial wave steepness was (ak)0 ≈ 0.31. For this value of the steepness
the class II instability overtakes class I instability and it is found that the development
of those instabilities leads to breaking through the formation of spilling breakers.

We compute numerically the nonlinear evolution and growth of crescent structures
up to the occurrence of the wave breaking as defined in § 2.2. We compare the
simulated wave fields prior to overturning of the wave with observations that are
available. Note that experimental observations deviate from numerical simulations in
the respect that in experiments a steady state is reached. Within the framework of
our numerical model, a further growth of the amplitude is limited by the breaking of
the waves.

It is expected that the growth of the dominant modes k1 = (1 + p, q) = (3/2, q) and
k∗

2 = (2−p, −q) = (3/2, −q) of the instability will be observed. The three-dimensional
patterns propagate with the phase speed of the basic wave. Numerical simulations for
an initial perturbation with (p, q) = (1/2, 4/3) are performed taking (ak)0 = 0.2985,
and ε = 0.05. Figure 3 displays the normalized energy and frequency evolution of the
dominant modes, over 16 periods of the unperturbed Stokes wave. As expected the
quintet interaction predominates and the wave-vectors and frequencies of the modes
responsible for this resonant interaction satisfy condition (3.2).

We make a direct comparison with available experimental data just before the
breaking stage is reached. Su defined six geometric parameters (see figure 4) and
seven ratio-aspect parameters to describe the L2 patterns. Table 1 gives a comparison
between Su’s experimental results and our numerical computations. Our results show
a maximal relative difference from the observations of less than 1 % for four of the
parameters and 6 % for the remaining parameters. This means that the final stage of
the computed steady horse shoe patterns corresponds to the experimentally observed
structures, both in amplitude and wavelength. Figure 5(a) displays the free-surface
elevation of the wave field prior to breaking that corresponds to the horseshoe
patterns as obtained experimentally.

Few experimental studies have been devoted to the less understood L1 pattern.
To our knowledge Collard & Caulliez (1999) are the only authors to have observed
this pattern experimentally, up to now. They noted that more understanding is
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Figure 4. Definition of Su’s geometric parameters.

Figure 5. Free surface elevation corresponding to (a) figure 3 at t/T0 = 18
and (b) figure 5 at t/T0 = 23.

λ2/λ1 h11/h12 h21/h22 h11/h21 h22/h11

h11 + h12

h22 + h21

Smax

Su results 1.28 1.10 0.88 1.66 0.68 1.49 0.65
Present results (ak = 0.2985) 1.28 1.11 0.88 1.56 0.73 1.38 0.66

Present results (ak = 0.33)
t/T0 = 8 1.05 1.09 0.91 1.27 0.86 1.16 0.46

Present results (ak = 0.33)
t/T0 = 9 1 1.08 0.91 1.31 0.84 1.20 0.61

Present results (ak = 0.33)
t/T0 = 10.75 1.28 1.12 0.85 1.53 0.76 1.33 0.67

Table 1. Comparison of characteristic crescent wave geometric parameters for which a
quasi-steady state is assumed to be observed for ak = 0.2985 and evolution of those parameters
for ak = 0.33 until the same state at t/T0 = 10.75.

required to explain its generation. Skandrani (1996) emphasized the existence of
such aligned patterns in his numerical simulations. Recently Fuhrman et al. (2004)
provided numerical simulations of these structures. We choose the initial perturbation
corresponding to (p, q) = (0, 4

3
) and ε = 0.05, which is a class II instability for the initial

wave steepness considered (ak)0 = 0.2985. The magnitude of the Fourier transform
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Figure 6. (a) Normalized energy evolution of the dominant modes k1 = (1, 4
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3
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∗ = (2, − 4
3
). (b) Evolution of the frequency ω. The initial perturbation corres-

ponds to (p, q) = (0, 4
3
), (ak)0 = 0.2985 and ε = 0.05.

of the perturbed wave field, |F(η̂)|, shows a pronounced growth of the modes with
wave-vectors k1 = (1, 4

3
) and k∗

2 = (2, − 4
3
) which satisfy k1 + k∗

2 = 3k0. Figure 6 displays
the energy and frequency evolution over 25 periods of the main components of the
wave field. Note that the energy corresponding to higher-order wave components
remains small as seen on figure 6(a).

Figure 6(b) shows that the frequencies become (almost) constant during the
simulation. Moreover, it is seen that the frequency resonant condition is satisfied:
ω(k1) + ω(k∗

2) � 3ω0.
The temporal evolution of the amplitude of the modes k∗

1 = (1, − 4
3
) and k2 = (2, 4

3
)

happens to be identical of that of k1 = (1, 4
3
) and k∗

2 = (2, − 4
3
) respectively. It is not one

resonant quintet interaction that results but two described by the following relations:

k1 + k∗
2 = 3k0,

ω(k1) + ω(k∗
2) = 3ω0,

k∗
1 + k2 = 3k0,

ω(k∗
1) + ω(k2) = 3ω0.

}
(3.3)

One can also note that these modes satisfy the following relations:

k1 + k∗
2 = k∗

1 + k2,

ω(k1) + ω(k∗
2) = ω(k∗

1) + ω(k2).

}
(3.4)

This resonant interaction between k1, k∗
2, k∗

1 and k2 explains the behaviour of their
amplitudes. The oscillations depicted in figure 5(a) are due to the transfer of energy
among these components.

Figure 5(b) shows the free-surface elevation of the wave field prior to breaking
that corresponds to the oscillating horseshoe pattern as obtained experimentally by
Collard & Caulliez (1999). Here the three-dimensional structures are periodically
shifted by one-half of the transverse wavelength, as was observed in the experiments.
The period of oscillation is that of the perturbations {k1, k∗

2} and {k∗
1, k2} respectively,

in the moving frame of reference, i.e. approximately 2.7T0, where T0 is the fundamental
period of the Stokes wave. Collard & Caulliez reported oscillations of the patterns
with a period of approximately three times T0. In their experiments they considered
wave steepness of about (ak)0 = 0.15, whereas we show results for (ak)0 = 0.2985. This
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Figure 7. Excited modes for two different transverse grid resolutions in a simulation with
(ak)0 = 0.2 and dominant modes k1 = ( 3

2
, 1.53) and k∗

1 = ( 3
2
, −1.53). These spectra correspond

to the end of the phase of increase of the satellites when the surface elevation shows fully
developed horseshoe patterns. (a) 16 modes in the transverse direction are solved with 64
collocation points and (b) 20 modes in the transverse direction are solved with 80 collocation
points.

difference does not affect the results (see § 3.2.3) presented here qualitatively but is
essential for the selection mechanism, as demonstrated below.

Other patterns, such as L3 and L4 have been studied, however. The dynamics is
similar and the quintet involving k1 = (1 + 1/n, q) and k∗

2 = (2 − 1/n, −q) is obvious
in each case.

Further results to confirm the excellent agreement with Su’s experimental results are
given in table 1 where we present the evolution of the parameters in a simulation where
ak = 0.33 (and ε = 0.05). This value, being considered closer to the experimental setup,
corresponds to the numerical simulation by Fuhrman et al. (2004). All the geometrical
parameters converge toward values which are close to the experimental ones. We note
here as well that we obtain breaking at the last time step presented in table 1.
This corresponds to a normalized time t/T0 = 10.75, while Fuhrman et al. (2004)
reported a breakdown of their simulation at a slightly larger time (at t/T0 = 11.45).
This difference may be due to the fact that they used a smoothing technique which
may have slightly slowed the process by dissipating some energy. Our results are still
qualitatively similar to their, however.

3.2.2. Critical wave steepness for the onset of three-dimensional breaking waves

The precise evaluation of (ak)crit is a difficult task, and one has to check that the
possible numerical blow-up is due to an effective wave breaking. In order to be sure
that the breaking of the wave is not due to a lack of accuracy we have to check that the
simulation is grid independent. Computations are hence performed for two different
grid resolutions as illustrated by an example leading to breaking of the waves when
the horseshoe patterns are fully developed. Figure 7 displays the excited modes in
the (kx, ky)-plane for an initial condition corresponding to a Stokes wave of steepness
(ak)0 = 0.20, perturbed by an unstable perturbation of class II with dominant wave-
vectors k1 = (3

2
, 1.53) and k∗

1 = (3
2
, −1.53). While for both numerical experiments eight

modes are resolved in the x-direction (discretized over 64 collocation points), in the
transverse direction either 16 or 20 modes of the perturbation are resolved (discretized
over 64 and 80 collocation points respectively). Components whose energy is larger
than 10−6 are depicted as a circle. For this given threshold the two grids provide the
same excited modes.
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Figure 8. Normalized energy evolution of the fundamental mode and satellites. (a) k0 = (1, 0),
k1 = ( 3

2
, q) and k∗

1 = ( 3
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, −q) with (ak)0 = 0.13, q =1.621, ε = 0.05. (b) k0 = (1, 0) , k1 = (1, q),

k∗
1 = (1, −q), k2 = (2, q) and k∗

2 = (2, −q) with (ak)0 = 0.13, q = 1.5975, ε = 0.05.

We hence find that the nonlinear dynamics of the most unstable class II perturbation
leads to two different regimes. For (ak)0 < 0.17 the evolution is characterized by
recurrence cycles (figure 8), while for greater values of initial steepness, the evolution
leads to breaking.

In order to check that and to have a reasonable idea of the maximum steepness
leading to a recurrence cycle, we performed a series of test with steepnesses
ak =0.16, 0.17 and 0.18 on two different resolutions where the initial perturbation is
set at the most unstable class II mode in each case (taking ε = 0.05). We resolve either
the first 7 or 15 first harmonics of the Stokes wave in the propagation direction. The
16 and 32 first harmonics of the perturbation are resolved in the transverse direction,
respectively. The results show clear breaking for both simulations with ak = 0.18, at
the same time (after 120 periods of propagation), with the same energy distribution
at the breaking point. Similarily, for ak =0.16, the simulation gives identical results
and leads to recurrence cycles (see § 3.2.3 below). The case for ak =0.17 is more
difficult to interpret since the ‘low’ resolution does not lead to breaking (we limited
the resolution to one cycle of recurrence when no breaking was observed, assuming
that breaking would occur at the point of maximum modulation) while the ‘high’
resolution leads to breaking at the point of maximum modulation. In consequence
we consider this value ak = 0.17 as being a qualitatively good enough represention of
the limit of breaking.

It is difficult, however, with the present method to give a more precise value than
the one we have obtained. Further work could be done in this direction, by using for
example a Lagrangian description which would be more appropriated to study the
problem of breaking by overturning and the formation of spilling breakers.

3.2.3. Evolution leading to recurrence

Experiments of Su (1982) and Melville (1982) showed that the generation and
amplification of crescent patterns lead to wave breaking. These experiments have been
conducted for wave fields in the steepness range where the most unstable perturbation
belongs to class II. We now investigate numerically the three-dimensional evolution
of non-breaking waves by considering an initial wave steepness (ak)0 = 0.13. We
consider an initial perturbation corresponding to the most unstable mode of the
class II instability with p = 1

2
and q as a function of (ak)0, i.e. q = q((ak)0). For such

steepness class II is no longer the most unstable class and the dominant instability
is of class I of modulational type. A way to damp or cancel the development of
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Figure 9. Iso-elevation plots corresponding to figure 8(a) at time (a) t/T0 = 340,
(b) t/T0 = 368, (c) t/T0 = 372 and (d) t/T0 = 420.

the modulational instability is to consider a plastic film as was the case in the tank
experiments of Collard & Caulliez. Numerically the modulational instability can
be cancelled, either by choosing N such that one cannot capture unstable class I
perturbations or by forcing those unstable perturbations to vanish. This means that
one can artificially impose zero amplitude to unstable class I modes, hence preventing
modulational instability from developing.

We find that if the initial steepness is lower than (ak)crit � 0.17, the dynamics
is periodic, similar to the well-known Fermi–Pasta–Ulam recurrence phenomenon.
Figure 8(a) shows the temporal evolution of the normalized energy of the fundamental
mode of the Stokes wave and satellites corresponding to p = 1

2
. Iso-elevation contour

plots of the surface are given in figure 9 at different instants of time corresponding
to modulation and demodulation phases due to class II instability. It can be seen
in figure 9 that during the phase of growth the horseshoe patterns have their front
oriented forward (figure 9(a, b) while they have a backward orientation in the phase
of decay (figure 9c, d). In the phase of growth, the number of transverse components
of the spectrum extends up to eight and the front of the crescent becomes higher
while the crescent itself becomes sharper as shown in figure 9(a). At the maximum of
modulation, the top parts of the crescent tend to becomes higher and longer while
during the phase of decay the spectrum narrows and the crescent separates from its
centre to merge into two inverted crescents as illustrated in figure 9(d).

Figure 10 displays the spectral components involved in the dynamics of the wave
field for two instants of time corresponding to phases of growth and decay of the
crescent patterns, respectively. Eight transverse wavenumbers are needed to describe
correctly the evolution and the shape of the crescent patterns. While the phase of
growth is accompanied by a spectral spreading of the energy, the phase of decay
corresponds to a spectral focusing as shown in figure 10 for two instants of time each
side of the maximum of modulation.

Finally, figure 8(b) presents the same kind of evolution for a perturbation
corresponding to L1 patterns (oscillating horseshoe). The recurrence is clear and
we have a similar evolution as previously described. The corresponding iso-elevation
contour plots of the surface are shown in figure 11.
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Figure 11. Oscillating horseshoe patterns corresponding to figure 8(b) at (a) 360T0
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4. Competition between crescent wave patterns and modulational instability
For large initial steepness, (ak)0 > 0.314, the time scale of development of class I

instability is much larger than that of class II which develops quickly and evolves into
a breaking wave. As mentioned previously the post-breaking dynamics is outside the
scope of our numerical model. We essentially look then at the competition between
instabilities of class II and between instabilities of class I and class II for (ak)0 < 0.314.

We have prohibited, up to now, the development of the modulational instability by
a suitable choice of the wave-tank length. This choice has been made to remove any
development of this instability. For N = 2, furthermore, it also forbids the development
of class II other than p = 0 and p = 1

2
. We wish here to assess the problem of

competition between several class II instabilities in a first step and then to look at
the competition between class I and class II instabilities for small to moderate initial
steepness.

4.1. Competition between instabilities of class II

We investigate here the problem of the competition between several class II
instabilities. We then consider a numerical wave tank with N = 4, allowing existence
and development of instabilities corresponding to p = 0, 1

4
, 1

2
, and 3

4
. We keep the same

grid and use as initial condition a Stokes wave with (ak)0 = 0.2 plus the whole discrete
spectrum of unstable perturbations. At such steepness, modulational instability would
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Figure 12. Normalized energy evolution of the dominant modes of the instabilities:
k3 = ( 3

2
, 1.53), k∗

3 = ( 3
2
, −1.53), k4 = ( 5

4
, 1.53), k∗

5 = ( 7
4
, −1.53), k4 ∗ = (5

4
, −1.53), k5 = ( 7

4
, 1.53),

k6 = (1, 1.53), k∗
7 = (2, −1.53), k7 = (2, 1.53), k∗

6 = (2, −1.53). The initial wave field is a Stokes
wave with (ak)0 = 0.20 plus the whole discrete spectrum of class II instabilities corresponding
to p = 0, 1

4
, 1

2
, 3

4
. ε = 0.0001.

dominate, however. We cancel these unstable perturbations of class I by restricting
their amplitude to zero, preventing hence modulational instability to develop.

The result is presented in figure 12 and demonstrates that all class II instabilities
may grow simultaneously. It can be noted that while the growth rate of each individual
quintet is slightly smaller than the corresponding one for a single quintet, the global
hierarchy due to their rate of growth is respected. Similar simulations with different
initial steepness have been performed and arrive at the same results. This means that
several instabilities of class II may develop and co-exist, leading to wave breaking.
Competition between instabilities of class II has been also investigated by Annenkov &
Shrira (2001) within the framework of the Zakharov equation.

4.2. Competition between instabilities of class I and class II

It was shown that the nonlinear evolution of class I instability may lead to breaking
for moderately small initial steepness (Banner & Tian 1996, 1998). Su & Green (1984,
1985) found experimental evidence that for moderately steep initial waves, the coupled
evolution class I/class II instabilities leads to breaking.

We consider as initial conditions Stokes waves of steepnesses (ak)0 = 0.10, 0.13
and 0.20 respectively, disturbed by unstable perturbations corresponding to different
values of p and q . For these values of the initial steepness, it is the modulational
instability which prevails.

Figure 13(a) shows the time history of the normalized energy of the fundamental
mode of the Stokes wave of steepness (ak)0 = 0.10 and modes k1 = (5

6
, 0), k2 = (7

6
, 0),

and k3 = (3
2
, 1.645), k3

∗ = (3
2
, −1.645). These modes are the dominant modes of class I

and class II instabilities and correspond to p = 1
6

and p = 1
2

respectively. The class II
instability generating L2 patterns is restabilized by the modulational instability.
For this value of the steepness, the transverse bandwidth of the instability region
corresponding to class II is extremely narrow so that one can assume that any weak
local modification of the steepness of the initial wave train will move this region and
so restabilizes the class II instability corresponding to (p, q) = (1

2
, 1.645). The initial

condition corresponding to figure 13(b) is similar to that of the previous simulation
except that modulational instability is not taken into account at the start of the
simulation. During the decrease of the energy of modes k3 and k∗

3 an amplification of
the dominant modes of the modulational instability is observed. For this value of (ak)0
breaking occurs when a coupling between the two instabilities and the fundamental of
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Figure 13. Normalized energy evolution of the main modes: k0 = (1, 0), k1 = ( 5
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, −1.645). The initial wave field is a Stokes wave with (ak)0 = 0.10 and

the initial perturbations are: (a) k1, k2, k3 and k3
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∗ only. ε = 0.025.

the Stokes wave prevails (figure 13b) while no breaking is observed in the simulation
corresponding to figure 13(a).

Figure 14(a) corresponds to (ak)0 = 0.13 and modes k1 = (3
4
, 0), k2 = (5

4
, 0), and

k3 = (3
2
, 1.621), k3

∗ =(3
2
, −1.621). These modes are the dominant modes of class I

and class II instabilities and correspond to p = 1
4

and p = 1
2

respectively. At the
maximum of modulation the growth rate of class II instability is enhanced. During
the demodulation period the energy of the subharmonic and superharmonic modes
of the modulational instability is decreased while the class II instability is growing,
becoming dominant around t = 250T0. For this specific value of the steepness class II
instability (L2 pattern) is triggered by class I instability, followed by wave breaking,
as suggested by Su & Green (1984, 1985). The initial condition corresponding to
figure 14(b) is similar to that of the previous simulation except that modulational
instability is not taken into account at the beginning of the simulation. One can
observe that beyond 700 fundamental periods, class I instability is excited followed
by wave breaking. Here again one notices a coupling between instabilities of classes
I and II and the fundamental of the Stokes wave.

For the numerical simulations corresponding to figures 15(a) and 15(b), the
class II instability is now an oscillating horseshoe pattern, L1, with dominant
modes k3 = (1, 1.5975), k∗

4 = (2, −1.5975) and k∗
3 = (1, −1.5975), k4 = (2, 1.5975). The

dominant modes of class I instability are k1 = (3
4
, 0) and k2 = (5

4
, 0). Figure 15(a)

shows that the energy of the modes of the class II instability remains close to zero. At
the maximum of modulation we do not observe an amplification of this instability as
was the case previously for the L2 pattern. As suggested previously, the restabilization
of the perturbation corresponding to the L1 pattern can be explained as follows. For
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is a Stokes wave with (ak)0 = 0.13 and the initial perturbations are: (a) k1, k2, k3 and k3

∗, (b) k3

and k3
∗ only. ε = 0.025.
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4
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4
, 1.612) and k4 = ( 7

4
, 1.612). The initial wave field is a

Stokes wave with (ak)0 = 0.13 and the initial perturbations are k1, k2, k3 and k3
∗. ε = 0.01.

(ak)0 = 0.13 the band width of unstable transverse wavenumber is �q = 0.009 on the
axis corresponding to p = 0. The modulation of the wave train due to class I instability
modifies its amplitude locally and consequently also the values of q corresponding
to unstable perturbations. Due to the narrowness of �q for p = 0 we can expect this
instability to be sensitive to the modification in steepness of the wave train and so
to be restabilized. Note also that for this value of q the instability corresponding to
the L2 pattern is linearly stable, explaining why this pattern is not excited during 800
fundamental periods. No breaking is observed. Figure 15(b) corresponds to an initial
unstable perturbation due only to class II with p = 0. Following the decrease of the
modes of this instability a strong amplification of the class I modes is observed. Here,
the coupled interaction of the fundamental mode of the Stokes wave with class I and
class II instabilities evolves to breaking.

Figure 16 describes the case corresponding to class II instability for p = 1
4

with

dominant modes k3 = (5
4
, 1.612), k∗

4 = (7
4
, −1.612) and k∗

3 = (5
4
, −1.612), k4 = (7

4
, 1.612).

The dominant modes of class I instability are k1 = (3
4
, 0) and k2 = (5

4
, 0). Here one

observes also a restabilization of class II instability due to modulational instability.
As a consequence, the L4 pattern is not excited. No breaking is observed.

For (ak)0 = 0.13, it is interesting to point out that only the most unstable pattern
L2 is triggered by the modulational instability.

Figures 17(a) and 17(b) show the time history of energy of the fundamental mode
of the Stokes wave of steepness (ak)0 = 0.20 and modes k1 = (2

3
, 0), k2 = (4

3
, 0), and

k3 = (3
2
, 1.53), k3

∗ = (3
2
, −1.53). These modes are the dominant modes of class I and

class II instabilities and correspond to p = 1
3

and p = 1
2

respectively. For this value of
the initial steepness the class II instability is not restabilized by the class I instability
(figure 17(a). In both cases breaking occurs.

For moderate initial wave steepness ((ak)0 = 0.10 and 0.13), the previous simulations
illustrate the importance of the interactions between class I and class II instabilities.
The dominant influence of the modulational instability is emphasized when the energy
level of class II instability is weak. Hence, the dominant class I restabilizes class II
instabilities. When the energy of class II instability is not negligible one observes a
coupling between the fundamental of the Stokes wave with both classes leading to
breaking.

Our results are in agreement with the experiments of Su & Green (1985) who
showed that the coupling between class I and class II instabilities results in
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Figure 17. Normalized energy evolution of the main modes: k0, k1 = ( 3
4
, 0), k2 = ( 5

4
, 0),

k3 = ( 3
2
, 1.53) and k∗

3 = ( 3
2
, −1.53). The initial wave field is a Stokes wave with (ak)0 = 0.20 and

the initial perturbations are (a) k1, k2 (with ε = 0.0001), k3 and k3
∗ (with ε = 0.01), (b) k3 and

k3
∗ only.

three-dimensional, crescent-shaped breaking waves of wave trains with the initial
steepness as low as 0.12. In their experiments class I instability grows first producing
a strong modulation of the envelope followed at the maximum of modulation by
the coupling between the two classes which generates three-dimensional breakers.
For (ak)0 > 0.12 we have observed the occurrence of a breaking due to instabilities
coupling. For (ak)0 = 0.10 we did not observe breaking waves if we start the numerical
simulation with the initial Stokes wave perturbed by a single instability corresponding
to class I, while it is not the case if we start with a single class II instability. In the
second case the class I instability is excited later and the instability coupling leads
to the breaking. Note that the latter case does not correspond to the Su & Green
experiments. Note that the threshold value when both class I and class II instabilities
are interacting seems to be a little greater than the value obtained by Banner & Tian
for a pure two-dimensional wave field.

Furthermore, these results are in accordance with those obtained by Stiassnie &
Shemer (1987) who used the modified Zakharov equation to study the coupled
evolution of class I and class II instabilities. They found a similar tendency of class I
to suppress class II whenever the level of class I disturbance was substantially higher
than that of class II, which is in agreement with our results.

5. Finite depth effect on class competition
The nonlinear evolution of class II instabilities has mostly been studied in the case

of infinite depth. We are investigating their behaviour on finite depth for kh = 1 where
h is the depth. A more detailed analysis will be presented in a forthcoming paper.
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Figure 19. Surface elevation corresponding to figure 18 at t/T0 = 160.

Here we focus our attention on the effect of the depth on the competition between
classes.

On finite depth, the overall behaviour of 5-wave interactions generating the crescent
patterns is similar to that corresponding to infinite depth. A series of recurrence
cycles occurs for small values of wave steepness, and breaking for higher values.
For kh = 1 and (ak)0 = 0.11, figure 18 shows the time history of the energy of the
dominant harmonics k1 = (3

2
, 0.98), k∗

1 = (3
2
, −0.98) and neighbouring harmonics of

the most unstable perturbation of class II leading to the occurrence of L2-patterns.
A recurrence phenomenon is observed. A surface elevation plot is given in figure 19.
The transition between recurrence and breaking is around (ak)0 = 0.13 for the most
unstable perturbation of class II. As for infinite depth, an oscillating L1 horse-shoe
pattern develops for k3 = (1, q), k∗

4 = (2, −q) and k∗
3 = (1, −q), k4 = (2, q). For kh = 1

and (ak)0 = 0.20, figure 20 demonstrates the co-existence of L2- and L1-patterns
corresponding to transverse wavenumber q = 0.91.

It is well known that the class I instability band detaches from the p-axis when
kh< 1.363. This critical value corresponds to a restabilization of the two-dimensional
long-wave perturbations. It is possible to exclude the class I instabilities by using a
sufficiently narrow tank. The transverse spectral discretization must be chosen (i.e.
tank width small enough) not to include the class I instability region. The longitudinal
spectral discretization can be arbitrarily fine. In this case it is not necessary to invoke
the presence of a plastic film to cancel or attenuate the modulational instability.
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Figure 21. Steepness threshold for recurrence vs. breaking and predominance of class I
instabilities vs. class II instabilities for kh = ∞ and kh = 1.

When the depth is reduced from kh = ∞ to kh = 1, the relative strength of class
I and II instability changes. In general, higher-order instabilities (quintet, sextet, . . .)
become more important for shallower water (Francius & Kharif 2005). The growth
rates of the most unstable class I quartet interaction and the most unstable class II
quintet interaction (see McLean 1982b) can be used to define which is the dominating
instability for a given depth and steepness. For the infinite depth case, the steepness
for which the maximal growth rates of class I and class II are equal is (ak)0 = 0.314,
whereas for kh = 1, the threshold steepness is only 0.10. Note that the highest values
of the steepness of a Stokes wave train are 0.4432 and 0.325 for kh = ∞ and kh = 1
respectively. Furthermore, class I instability seems not to cancel class II instability
unless its growth rate is significantly larger than that of class II. For infinite depth
class II instabilities are dominant for strongly nonlinear Stokes waves while for kh = 1
they are dominant for moderately nonlinear water waves. We can conclude that it
should be easier to observe crescent wave patterns in finite depth rather than in
infinite depth. Figure 21 shows the critical values of the steepness separating class I
and class II predominance. For a wave steepness larger or smaller than this critical
value it is instabilities of class II or class I which dominate, respectively. In both cases,
the threshold steepness separating recurrence and breaking phenomena for class II
instabilities is given. It is seen that for kh = 1, class II instability dominates for all of
the range where breaking occurs.
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Figure 22. Coexistence of class I and class II instabilities for kh = 1 and (ak)0 = 0.10.
(a) development of the dominant modes k1 = ( 3

2
, 0.31) and k2 = ( 1

2
, 0.31) of the unstable class I

perturbation for (p, q)= ( 1
2
, 0.31). (b) Development of the dominant modes k3 = ( 3

2
, 0.992) and

k∗
3 = ( 3

2
, −0.992) of the unstable class II perturbation for (p, q)= ( 1

2
, 0.992). The instabilities

are triggered with ε = 0.05.

For kh = 1, it is expected that class I and class II should coexist for realistic values
of the steepness, namely (ak)0 = 0.10, if the chosen unstable perturbations have similar
growth rates, even in a wide tank. This is indeed what is observed in a simulation where
k1 = (3

2
, 0.31), k2 = (1

2
, −0.31) (class I) and k3 = (3

2
, 0.992), k∗

3 = (3
2
, −0.992) (class II)

both are triggered with ε = 0.05 (see figure 22). The growth rate evolutions are very
similar for the first � 150 periods, but the class II instability then grows larger than
the class I instability.

6. Observability of oscillating crescent patterns in water wave tanks
We now focus our attention on the problem of the observation of L1 patterns

in water wave tanks. While the particular case of L2 patterns due to the growth
of the most unstable perturbation of class II is well understood, the mechanism
responsible of the generation of L1 patterns is less understood. For sufficiently steep
Stokes waves the dominant instability is that corresponding to L2 patterns and it
is natural to observe these structures which evolve into three-dimensional spilling
breakers. Collard & Caulliez (1999) reported observation of L1 patterns, however.
They emphasized that the selection mechanism of such patterns was still unexplained.
For moderately steep Stokes waves propagating on the free surface of an unbounded
fluid, the most unstable perturbation is of class I and the dominant instability of class
II corresponds to L2 patterns. It is surprising to observe L1 patterns. Due to finite
tank width these patterns are excited by noise or parametric resonance as shown
below. From this point of view instabilities corresponding to L1 patterns can become
the dominant ones in confined geometries. Our goal in this section is to suggest
another possible mechanism for the generation of the oscillating structures in water
wave tanks. The parametric instabilities due to the wave-maker can promote and
force linearly unstable perturbations of Stokes wave trains.
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Figure 23. Schematic instability diagrams of class II focusing on the unstable region with
0 � p � 0.5. The different cases depict the three regimes in infinite depth corresponding typically
to (a) (ak)0 < 0.17, (b) 0.17 < (ak)0 < 0.2 and (c) (ak)0 > 0.2. The black dot labels the most
unstable perturbation of class II and the white dot labels the most unstable mode along the
line q = qc .

6.1. Conditions for the occurrence of oscillating crescent patterns

From the previous results, we now present the conditions required for the appearance
of L1 patterns. To generate such structures in water wave tanks, the following
conditions have to be fulfilled:

(i) An attenuation of modulational instability
Since we have to consider a moderately steep initial wave and since we have seen
that in such a context class I is dominant, in most cases cancelling any further
development of class II instability, class I has to be attenuated or prohibited. This can
be achieved in wave facilities by putting a plastic film on top of the fluid (Collard &
Caulliez 1999). Note that in finite depth (for kh< 1.363) the strength of the dominant
instabilities of class I and class II are of same order when the wave is moderately
steep. Thus, in this case, the class I instability is no longer the predominant one.

(ii) A selection mechanism of an unstable transverse wavenumber
This means that through a series of specific mechanisms, depicted in § 6.2, a transverse
wavenumber is selected. Let us denote by qc this transverse wavenumber which falls
in the class II instability domain of the (p, q)-plane. However, note that an alternative
selection mechanism described by Furhman et al. (2004) can prevail to explain the
occurrence of L1 patterns.

(iii) A weakly nonlinear initial wave train for the selected transverse wavenumber
It is well known that the most unstable perturbation of class II is for p = 1

2
,

corresponding to L2 patterns. We have seen moreover that several class II instabilities
may coexist and develop together. To obtain L1 patterns one has thus to make sure
that the perturbation corresponding to (p, q) = (0, qc) is the most unstable one along
the straight line q = qc in the (p, q)-plane. In order to satisfy this condition, the
projection onto the q axis of a neighbourhood of the most unstable perturbation of
class II (p = 1

2
) must not include qc. Figure 23(a) illustrates such a condition where

I(p) is the projection on the q-axis of the intersection of the domain of instability
with the straight line p = 1/n. Here the bands I(0) and I( 1

2
) are disconnected, and

if qc is included in I(0), the mode (0, qc) may be the most unstable one along
the straight line q = qc. This condition can only be satisfied for small values of
(ak)0, typically for (ak)0 < 0.17 (in deep water). A steepening of the initial wave field
corresponds to a flattening of the domain of instability of class II and a broadening
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Figure 24. Margin of stability of the two first cross-wave modes. The solid lines are neutral
wavemaker amplitude as a function of wavemaker frequency while the grey areas represent
unstable regions and correspond to a growth of the cross-waves. The wavemaker parameters
correspond to the experimental setup by Collard & Caulliez while the squares indicate the
location of some of their experiments.

along its axis of symmetry. When (ak)0 increases, the two regions I(0) and I( 1
2
)

may overlap, but the previous condition can still be fulfilled in a transition regime
as shown in figure 23(b). For (ak)0 > 0.2, the band I(0) is now included in I( 1

2
) due

to the flattening of the unstable region. Figure 23(c) illustrates this regime where the
most unstable perturbation along the straight line q = qc is no longer on the q-axis,
whatever arbitrary choice of qc is made. The dominant instability corresponds now
to p = 1

2
and L2 patterns should occur.

These three conditions appear then as requirements for the development of
oscillating patterns.

6.2. Selection mechanism of the unstable transverse wavenumber

This selection involves two main steps.

6.2.1. Parametric resonance of cross-waves

Since Faraday’s first experiments, it has been well known that parametrically
excited cross-waves may be generated in a tank by the motion of the wavemaker
(Garrett 1970; Mahony 1972; Jones 1984; Miles 1988; Miles & Becker 1988). If
the frequency of excitation (that of the wavemaker) approximates twice one of the
resonant frequencies of the transverse standing wave modes and if the amplitude of
excitation exceeds a threshold, energy is transferred from the wavemaker motion to
the cross-waves through nonlinear interaction.

This transfer is possible if the half-frequency of excitation ω/2 approximates one
of the natural frequencies

ωn =
√

ngπ/b (n = 1, 2, . . .) (6.1)

where b is the width of the tank and where the tank is assumed of infinite depth (in fact
the value of the dispersive parameter kh for the first transverse eigenmode is greater
than 1, suggesting that finite depth effects do not drastically change the frequency
and the domain of instability of this eigenmode). In this case Jones (1984) obtained
the evolution equations which govern the growth of these cross-waves. We can hence
derive, for a given experimental setup, the margin of stability of each of these cross-
wave modes which gives us the minimum wavemaker amplitude able to excite those
cross-waves. Figure 24 displays the margin of stability computed from Jones’s results
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(corrected by considering the sign errors in Jones’s equations (41)–(42) as mentioned by
Lichter & Chen 1987) for the two first cross-wave modes corresponding to Collard &
Caulliez’s experiments. In their experiments the wavemaker is of the flap type and the
maximum displacement a rose to 15 cm when the wavemaker frequency was in the
range 1.2 s−1 <f < 1.5 s−1. This made possible excitation of the two first cross-wave
modes in this case.

6.2.2. Superharmonic cascade

Once the first or the first two transverse eigenmodes of the channel are excited,
they nonlinearly interact with the basic Stokes wave train. This leads to excitation of
higher components and a transfer of energy to higher transverse wave modes of the
channel.

As an example of such nonlinear interactions, we consider a simulation with
initial wave steepness (ak)0 = 0.17. For such a steepness, the class II modes which are
involved in the quintet interactions corresponding to the development of the L1 pattern
are k0 = (1, 0), k4 = (1, qc), k∗

5 = (2, −qc), k∗
4 = (1, −qc) and k5 = (2, qc). The maximum

growth of these instabilities corresponds to qc =1.551. In a wave tank of width b, the
smallest transverse wave-vector component is k⊥ = π/b and higher harmonics are nk⊥.
If there exists an integer n which satisfies nk⊥ = qc one can expect the class II instability
to be excited. Herein we choose n= 8. This means that qc = 1.551 corresponds to the
eighth transverse eigenmode of our numerical channel. We also check that no other
transverse eigenmode lies in the class II instability region. For illustration, the initial
perturbation is hence chosen to be set to the first transverse eigenmode of the channel
so as to simulate the first cross-wave which may be parametrically excited. As its
growth rate is close to that of the class I instability, the relative amplitude of the
perturbation is taken as ε = 0.1. Figure 25 presents the results of such a simulation.
It displays the evolution of the normalized energy of the fundamental of the Stokes
wave and the most amplified modes. Here the energy is transferred from the first
eigenmode of the channel to higher transverse harmonics by nonlinear interaction
with the Stokes wave. When energy is increased to the eighth transverse eigenmode,
the instabilities involving k0, k4, k∗

5 and k0, k∗
4, k5 start to grow. This transfer is further

illustrated in figure 25(c, d) where a wave-vector spectrum description of the modes
involved at several instants of time of the simulation is displayed. Finally, figure 25(b)
shows a surface elevation plot at the end of the simulation corresponding to L1

patterns (to be compared with Collard & Caulliez (1999) figure 1b). We performed
a numerical simulation where the initial condition includes the second cross-wave
mode instead of the first mode. The oscillating structures are now observed to grow
with a characteristic time scale decreased by factor two. A further simulation with
the two first cross-wave modes gave the same result: the time scale of L1 patterns
is reduced by a factor two. When the second cross-wave mode is taken into account
the characteristic time scale for the occurrence of the aligned crescent structures is
close to 370T0 (half of the period given by figure 25). The linear stability analysis tells
us that the characteristic time scale of class II instability is of O((ak)−3

0 T0). Hence
for (ak)0 = 0.17, this time scale is close to 200T0. This means that the time scale
of the occurrence of the oscillating patterns is multiplied by about one and a half
because of the superharmonic cascade. This factor can be significantly reduced if the
initial amplitude of the cross-wave modes is increased. The quantitative difference
observed between the experimental and numerical characteristic time scales is due
to the presence of a plastic film in the experiments. The experiment for (ak)0 = 0.17,
with the plastic film, does not correspond to a Stokes wave with this wave steepness.
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Figure 25. Evolution of a perturbed Stokes wave train of initial steepness (ak)0 = 0.17 and
ε = 0.10 (the wave-vector spectrum of the initial condition is given in (c)). (a) Normalized energy
evolution of the main modes k0 = (1, 0) (thick solid line), (1, ±qc) (thin solid line) and (2, ∓qc)
(dashed line) with qc = 1.58. (b) Free-surface elevation at t/T0 = 740. (c, d) wave-vector spectra
of the free surface at t/T0 = 0 and t/T0 = 740. Harmonics with energy larger than 10−6E0 are
depicted as a circle.

As shown by Furhman et al. (2004) the experiments correspond to higher values of
the wave steepness. This explains why the period of occurrence of these structures is
strongly reduced.

It can be added here that, in this example, the numerical grid was chosen to allow
modulational instability to develop. In the case where only the first cross-waves were
excited at the beginning of the simulation, we observed no development of class I
instability (as depicted in figure 25). If modulational instability and cross-waves are
both included in the initial condition, class I develops, leading to breaking, however.
The growth of the modulational instability avoids the development of the oscillating
patterns. This explains why it is necessary to attenuate the growth of the modulational
instability to observe these patterns.

The competition between the two generating processes deserves much more study.
This is not our aim here and we just want to show that parametric excitation may
play a major role in the whole process by speeding up the development of L1 patterns.

While we have shown that parametric resonance, in a wave tank, may promote
transfer of energy to the first cross-wave modes, nonlinear interaction with the basic
Stokes wave leads to a rise of higher transverse eigenmodes of the channel. Those
eigenmodes are then amplified and a low level of energy is sufficient to trigger
instabilities of class II whose transverse wavenumber corresponds to these excited
transverse eigenmodes.

6.3. Numerical simulation

The mechanisms described in the previous subsection are relevant to explain the
occurrence of the L1 pattern observed by Collard & Caulliez (1999). Following their
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Figure 26. Class II instability diagrams for wave steepness (ak)0 = 0.13 and (ak)0 = 0.17. The
horizontal lines correspond to two consecutive eigenmodes of the numerical channel considered
while the dots represent the most unstable perturbation along those horizontal lines.

experiments, we consider two different values of the wave steepness, in the range
0.13 < (ak)0 < 0.17. In order to reproduce the experimental results, we must observe
emergence of L2 patterns for the steepness (ak)0 = 0.13 and L1 patterns for a higher
steepness. This means that if the considered steepness is (ak)0 = 0.13, qc lies in I( 1

2
)

while for higher steepness qc lies in I(0). The experimental results show moreover
that the transition from L2 to L1 patterns with increasing steepness is accompanied
by a transition from qc = nk⊥ to qc = (n − 1)k⊥ (see figure 1c, d of Collard & Caulliez,
with n=8). As emphasized in § 6.2.2, the plastic film has the effect of bringing the
instability diagram closer to the p-axis than theoretically expected without it. We
hence cannot simulate numerically exactly the experiments with the plastic film and
we shall assume that its unique effect is to cancel modulational instability. Hence we
do not expect to reproduce the experimentally observed value of qc. The simulated
growth rate is expected to be quite different from the observations. The selection
mechanism suggested here is assumed to work for both numerical simulations and
experiments, nevertheless.

We thus consider condition (i) to be fulfilled and we numerically suppress
development of modulational instability. Having computed the margin of stability
for the first cross-waves in this case, we showed above that parametric resonance was
possible and that condition (ii) was fulfilled.

Figure 26 shows the instability diagrams for two values of the steepness (ak)0 = 0.13
and (ak)0 = 0.17. It is clear that in this case condition (iii) is fullfiled in the whole
range of wave steepness considered experimentally.

Assume now a tank width b such that there exists only one multiple of k⊥ which
falls into the class II unstable region and is included in I( 1

2
). There exists then an

integer n such that qc = nk⊥ belongs to I( 1
2
): L2 patterns are observed. When the wave

steepness increases, the instability region is moved closer to the p-axis. There exists a
critical steepness for which nk⊥ is no longer included in I( 1

2
), while (n − 1)k⊥ ∈ I(0):

L1 patterns are observed. Inversely, considering two values of the steepness, one may
choose the tank width b in such a way that this transition is possible. Figure 26 also
shows two consecutive eigenmodes of the channel which have been chosen for the
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numerical simulations. In this case the previously described scenario can be applied
and such a transition between the two values of the steepness is possible.

6.4. Comments on extension to finite depth

Generalization of the previous result should be to consider finite-depth simulations.
We have already pointed out in § 5 that in the finite-depth case the class I and
class II instabilities have comparable strengths for moderately steep waves if (ak)0 is
around 0.1, which corresponds to 30 % of the highest steepness. Hence conditions (i)
and (iii) are fulfilled if moderately steep waves are considered. In a channel of finite
depth, the parametric excitation is still valid and theoretical analysis is known to
lead to similar results (with only a small correction due to the finite-depth effect). It
Would be interesting to reproduce in a wave laboratory the experiments of Collard &
Caulliez (1999) on oscillating patterns, in finite depth. In this case a plastic film is not
necessary to generate L1 patterns.

7. Conclusion
A detailed investigation of three-dimensional patterns occurring at the sea surface

has been presented. Their study is important to provide a better description of the sea
surface roughness which is crucial to determine correctly fluxes between ocean and
atmosphere. The time scales during which these three-dimensional structures can be
observed depend on the steepness of the initial Stokes wave trains. Their nonlinear
evolution usually results in the breaking of the wave.

Before investigating wave trains evolving to breaking, we checked that the numerical
method was able to treat very steep gravity waves. A Stokes wave train with a
steepness of (ak)0 = 0.4 was propagated steadily for 100 periods. The efficiency of the
Eulerian numerical approach used herein to recognize waves evolving to breaking has
been checked in two-dimensional and extension to a three-dimensional free surface
has been developed. Numerical simulations taking into account both class I and
class II instabilities showed that for moderately steep waves, namely (ak)0 > 0.12,
their nonlinear coupling (involving the fundamental of the Stokes wave) results in
breaking of the wave when in the initial condition only the modulational instability
was considered. This result is in agreement with the experiments conducted by Su &
Green (1985). Furthermore, we found that breaking can occur for (ak)0 = 0.10 when
the initial unstable perturbation corresponds to the phase-locked crescent-shaped
patterns. At the maximum amplitude of this instability the modulational instability is
excited followed by the breaking of the wave. For steeper waves, the strength of class
II instability alone is sufficient to trigger breaking of the wave. It was shown that
the nonlinear dynamics of the most unstable class II perturbation leads to breaking
when (ak)0 > 0.17.

For moderately steep waves, deep water modulational instability occurs naturally.
To observe the oscillating horseshoe patterns in a water wave tank of infinite depth
Collard & Caulliez (1999) used a plastic film to cancel this instability. It was
shown that parametric resonances due the wave-maker could select and amplify
the occurrence of the oscillating patterns observed in water wave tanks. Despite this
artificial generation we believe that the L1 patterns may be observed in coastal zones
where the strength of modulational instability is attenuated. It would be of primary
interest to conduct experiments in a tank of finite depth to check the observability of
these three-dimensional structures.
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Xue, M., Xü, H., Liu, Y. & Yue, D. K. P. 2001 Computations of fully nonlinear three-dimensional
wave-wave and wave-body interactions. Part 1. Dynamics of steep three-dimensional waves.
J. Fluid Mech. 438, 11–39.

Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid.
J. Appl. Mech. Tech. Phys. 9, 190–194.


